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The method of contour dynamics (CD) is applied to several inviscid prototype flows 
typical of the motions found in the transition region of the free shear layer. Examples 
of the interaction between the fundamental streamwise-layer perturbation and its 
first subharmonic are presented that illustrate the events of pairing and tearing of two 
rolled-up cores and also the coalescence of three rolled-up cores. The present 
simulations of the temporally unstable two-dimensional layer, a t  effectively infinite 
Reynolds number, support the hypothesis that the dynamics of the large-scale roll- 
up is only weakly dependent on Reynolds number. However, we find fine-scale 
structure that is not apparent in previous simulations a t  moderate Reynolds 
number. Spiral filaments of rotational fluid wrap around the rolled-up vortex cores 
producing ‘spiky ’ vorticity distributions together with the entanglement of large 
quantities of irrotational fluid into the layer. Simulations proceeded only until the 
first such event because we were unable to resolve the fine detail generated 
subsequently. The inclusion of prescribed vortex stretching parallel to the vortex 
lines is found to accelerate the initial roll-up and to enhance the production of spiral 
vortex filaments. In the fundamental-subharmonic interaction, vortex stretching 
slows but does not prevent pairing. 

1. Introduction 
Numerical simulations of temporal two-dimensional mixing/shear layers have 

successfully provided structural models and examples of various flow features 
observed in experiments. These include the nonlinear roll-up of the nearly plane layer 
into compact vortex cores, the pairing of vortex structures and resulting growth in 
thickness of the layer. Aref (1983) reviews the application of vortex-element methods 
to the two-dimensional simulation of the mixing/shear layer. 

A realistic model of the shear layer, based on solutions to the full Navier-Stokes 
equations, would have both a finite-thickness (6) layer and a finite viscosity (Y) fluid. 
However, the range of Reynolds number (Re) obtainable in even two-dimensional 
numerical simulations i s  severely restricted owing to the computational burden of 
accurately resolving the fine-scale motions. Hence, most computational studies 
which aim to be relevant to high Re have either used a model in which both 6-t  0 and 
Y --f 0 (a vortex-sheet of zero thickness) or a model having 6 > 0 and Y + 0 (a finite- 
thickness inviscid vortex layer). 

The approximation of the layer as a vortex sheet has been investigated by Damms 
& Kuchemann (1974) and Higdon & Pozrikidis (1985) among others. This model is 
apparently not well posed and there is now substantial evidence which suggests that 
the evolution of the vortex sheet results in the formation of a singularity in the sheet 
curvature in a finite critical time t = t, (Moore 1979 ; see also Meiron, Baker & Orszag 
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1982; Krasny 1986a). The sheet evolution beyond t,  remains an open question 
although the so-called ‘&model ’ calculations of Krasny (19863) give some support to 
the conjecture that a compact vortex spiral forms at t = tl. If correct, this may save 
the vortex-sheet model in the mathematical sense but would leave the numerical 
analyst with the formidable problem of accurately calculating the vortex spiral 
structure in the simulations for t > t i .  Note that Moore (1978) has considered a layer 
of small but finite 6 but the relevant equation of motion admits spurious short-wave 
instabilities. 

The second approach of keeping 8 finite and setting v = 0 appears to be a well- 
defined limit (for a uniform vortex layer this is also an open question owing to 
possible fine-scale filamentation of the vorticity interface ; see e.g. Dritschel 1987) 
and may also be a more realistic physical representation of the early stages of an 
experimental shear layer a t  very large Re. In  studying solutions to this model, we 
suppose that for finite times in strictly two-dimensional flow, the limiting solution to 
the Navier-Stokes equations (in the absence of solid boundaries) as Re + co (or as 
v + 0) is equivalent to the solution of the incompressible Euler equations starting 
with the same initial conditions (vorticity field) (see e.g. Saffman & Baker 1979). 
Hence, we assume that the inviscid simulations in the following discussion will be 
relevant to the behaviour of the layer as Re+ co. 

The definition of the vorticity field and the appropriate Reynolds number in 
solutions of the plane Navier-Stokes equations are closely linked with the numerical 
technique. The simulations of finite-thickness layers have usually been based on flow 
models having either (i) continuous vorticity distribution a t  low to moderate Re 
(finite-difference or spectral methods), (ii) discrete vorticity distributions such as a 
cloud of point vortices or vortex blobs, or (iii) a step-function distribution such as 
used in the contour-dynamics (CD) method (Zabusky, Hughes & Roberts 1979) a t  
effectively Re + 03. 

Short-time simulations showing the fine details of one amalgamation event have 
been performed by Patnaik, Sherman & Corcos (1976)’ Acton (1976) and Riley & 
Metcalfe (1980). These studies have mainly concentrated on the interaction of the 
fundamental perturbation combined with its first subharmonic which may be 
expected to have maximum growth rate (Pierrehumbert & Widnall 1982). Although 
the simulations of both Riley & Metcalfe (spectral method) and Patnaik et al. (using 
the finite-difference method) were limited to Re, = 0(100), they still produced 
vortex-pairing scenarios similar to those produced in the point-vortex simulation of 
Acton. The vortex tearing mechanism (Moore & Saffman 1975) was also examined in 
these simulations and was found to occur over a longer timescale and be weaker than 
the pairing interaction in cases where both effects were present. 

Several ‘ long-time ’ numerical simulations have been performed which provide 
vortex histories over timescales spanning several vortex lifetimes. Ashurst (1977) 
used a vortex-blob technique in which vortex elements were ejected into the flow a t  
the trailing edge of a splitter plate and were allowed to evolve as they convected 
downstream. Ashurst showed that the dominant mechanism for the production of 
the larger structures was by pairing of the smaller cores (or clouds of vortex 
elements). Aref & Siggia (1980) performed a simulation of the spatially periodic shear 
layer using the cloud-in-cell (CIC) technique with 4096 vortex elements. They 
provided statistical estimates of the layer properties and suggested that the growth 
of the cross-stream thickness was due, in part, to the scattering of the vortex cores 
about the centreline of the layer. The initial conditions a t  the splitter plate were 
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disturbed with combinations of the primary eigenfunction and its subharmonics and 
vortex histories showed examples of pairing and tearing of the vortex cores. 

In this paper we shall use the inviscid CD formulation for an x-periodic vorticity 
layer to produce moderate time, high-resolution simulations of the temporal shear- 
layer evolution a t  Re, = co without the inherent ‘graininess’ of the vortex-element 
techniques. The first such simulation of this type known to us is that by Pozrikidis 
& Higdon (1985) who used a model consisting of a single finite-thickness layer of 
uniform vorticity. Presently, we shall investigate the evolution of a non-uniform- 
vorticity layer, defined by a piecewise-constant vorticity distribution, which is 
initially disturbed by imposing one or more eigenfunction modes, as calculated by a 
linear analysis, with small but finite amplitudes. Such nearly continuous distributions 
are representative of the ensemble-averaged vorticity fields measured by Browand & 
Weidman (1976) and Oster & Wygnanski (1982). 

We base our prototype flows on the Corcos-Lin-Sherman (CLS) model in which 
the temporal shear layer is defined as a short hierarchy of deterministic motions 
interacting via a system of identifiable nonlinear instabilities (Corcos & Sherman 
1984; Corcos & Lin 1984; Lin & Corcos 1984). Each level of motion in the hierarchy 
is characterized by a specific vorticity distribution evolving within the ambient 
strain environment provided by the other scales of motion. The first tier (or first- 
order motion) is the standard temporal two-dimensional instability and charac- 
teristic roll-up of the layer into vortex structures whose axes are aligned in the 
spanwise direction (the primary vortices). The secondary vortices are modelled as an 
array of highly flattened, counter-rotating vortices (with axes aligned in the 
streamwise direction) evolving in the local strain environment provided by the 
primary vortices. A CD simulation of this vorticity distribution has been attempted 
by Pullin & Jacobs (1986). The third tier of deterministic motions is composed of the 
small-scale eddies that evolve on the secondary streamwise vortices. For increasing 
Re, the secondary vortices will become very thin and, on a small scale, the local 
environment will be similar to that of an infinite vortex layer embedded in a 
stretching strain field. Such a stretched layer may be expected to be unstable to 
spanwise perturbations and lead to the production of tertiary motions (Lin & Corcos 
1984). Hence, we expect that the evolution of a stretched shear layer will be relevant 
to the tertiary motions when the aspect ratio of the secondary vortices becomes 
large. At low Re these motions may not evolve as the viscous diffusion/stretching 
strain balance of the Burgers-like vorticity distribution is achieved in a short time 
but, for Re + 00, we conjecture that several tiers of higher-order structures will 
rapidly generate motions needed for the energy cascade to smaller scales 
characteristic of inertial-range turbulence. 

2. Formulation 
2.1. Flow configuration 

We shall study numerically the nonlinear evolution of initial vorticity distributions 
of the type illustrated in figure 1 .  These will model the initial (perturbed) state of the 
temporal shear layer. The two-dimensional vortex layer is periodic in the x-direction, 
y is the cross-stream direction and z is the spanwise direction (of the shear layer). 
Only one streamwise wavelength 0 d 2: < A, of the x-periodic computational domain 
is shown and this contains circulation re. The initial vorticity 

0 = 4 Y )  k, (1) 

4 FLM 199 
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FIGURE 1. A single wavelength of an s-periodic shear layer consisting of M = 4 uniform-vorticity 
regions. The bounding contours (primed subscripts indicate contours below the z-axis) are 
disturbed by a small-amplitude perturbation. The associated mean s-velocity field, u(y) and 
vorticity cross-section are shown to the right. 

of the undisturbed layer is a piecewise-constant distribution with regions, Rj, 
j = 1 .  ..M, 1’ ... M containing fluid with vorticity w, in both regions R, and Rf. 
The primed indices here indicate contours that are positioned a t  y-stations initially 
below the x-axis. Each contour above the x-axis has a corresponding contour below 
the axis. The associated velocity field, u,(y), varies piecewise-linearly from + AU/2,  
y > h, /2  to - A U / 2  for y < - h , / 2 ,  where h, is the average distance between the 
contours, Cj, j = 1 . . . M ,  1’. . . M‘ (which delineate the discontinuities of the double- 
staircase vorticity profile). The contours are labelled C, to C, progressing from the 
top to the middle of the layer (and Cl, to C,, for the lower contours). Hence, the 
regions R,, j = 1 . . . M - 1 are bounded by contours C, and C,,, with R, (being the 
same region as R,,) bounded by C, and C,.. Specific w-distributions across the layer 
will be discussed in $4. 

2.2. Contour dynamics 
We utilize the contour-dynamic (CD) technique (Zabusky et al. 1979), which is 
suitable for the simulation of ‘almost-continuous’ vorticity fields in a two- 
dimensional flow of an inviscid fluid. We consider an initial vorticity field with only 
one component of vorticity 

and its associated two-dimensional velocity field 

0 = w(x, y,t = O)k, (2) 

u = V,i+V,j, (3) 

where (i , j ,  k) are the unit vectors along the Cartesian axes. Using V * u  = 0 for an 
incompressible fluid and o = V x u it  follows that, V, and V, may be derived 
kinematically from a cylindrically symmetric vorticity field. 

The vorticity field is embedded in an irrotational uniform strain field 

us = -y(t) G+ y( t )  zk, (4) 

where y( t )  is an arbitrary strain rate which we shall assume is a specified function of 
time. Positive y( t )  will stretch the vorticity in the z-direction. The full velocity field 
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is U+U, and, when substituted into the vorticity transport equation with Y = 0, 
gives 

The solution to ( 5 )  along particle paths z(t), y(t) is 

where w[z (O) ,  y(O), 01 is the initial vorticity. Equations (6a, b)  represent the 
intensification of particle vorticity (for y(t)  > 0) by the z-component of the applied 
strain field. We now choose the vorticity field to be the piecewise-constant 
distribution of $2.1 and let Q ( e )  = z,(e)+iy,(e) denote a material point on C,. 
Identifying the velocity dl$/dt (* = conjugate) with the Eulerian velocity field, we 
obtain the CD equation for the evolution of C, as (Pullin & Jacobs 1986) 

where Aw,(O) = wm(0)-wm-l (O) .  The summation is over all nested contours 
W,,, = C,+C,,,m = l . . .M.  

For the simulation of the nominally two-dimensional flow of the temporal shear 
layer, we may set the stretching y = 0 and recover the purely two-dimensional CD 
equations. Stretching does not allow the creation of vorticity. Hence, the circulation 
SZ, of region Rj is an invariant of the flow and, from (6), the area A, enclosed by 
C, and C,,, varies as 

A,@) = 4 0 )  exp [-&(t)I* (8) 

3. Numerical implementation 
There are four major sections to the implementation of the CD equations: 
(i) Each continuous contour is discretized by defining it as a set of nodes connected 

by line segments. This produces a finite set of ordinary differential equations (ODEs) 
suitable for a numerical implementation. 

(ii) The line integral in (7)  is evaluated either analytically or by numerical 
quadrature over each small segment and then summed. 

(iii) The solution is stepped forward in time using a standard technique for first- 
order ODEs. 

(iv) The node set is (occasionally) updated to ensure that the segmented contour 
description remains adequate. 

We first discretize the C,, j = 1 . . . M ,  by defining each contour by a set of N5 nodes 
(c;.),, k = O...N,(t), j = 1 ... M ,  with (c,), = ( & ) N + A c  (i.e. open contours) for the 
contours C, and C,., respectively, of the vortex layer. Joining subsets of two or three 
of these nodes are NSEG;. segments describing C, with a local interpolating 
polynomial. The velocities of the (&), are then evaluated by summing the 
contributions of each interpolated segment, thus giving a set of 2N, 

M 

3-1 
N = I; Nj(t), (9) 

4-2 
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ODES for the node coordinates, ( ( z ~ ) ~ ,  (Y,)~). These segments of the Cj are defined 
locally by interpolating curves on node subsets with parameter e .  For the simulations 
reported here, we choose the interpolating segments to be parabolic curves 

LJe) = Ae2+Be+C, - 1 < e < 1 

defined on subsets of three adjacent nodes with 

a e  = - 1) = (Cm)n-19 6 ( e  = 0) = (Cm)n, a e  = 1) = (Cm,,+,. 
Other interpolation methods include circular arcs fitted to node subsets (Pozrikidis 
& Higdon 1985) and cubic splines (Dritschel 1988). Adequate resolution is required 
for conservation of the flow invariants such as the total circulation and also for 
maintaining contour flexibility. We found that the Cj were inflexible if the segment 
sizes were significantly larger than the lengthscales associated with the velocity 
variations. Dritschel (1988) suggests that there is also an advantage in having a 
description (e.g. cubic spline) that does not introduce discontinuities in the contour 
curvature. We note that parabolic segments do so. 

The equations of motion for the node coordinates contain integrals over the 
interpolating segments which cannot be obtained in closed form. Also, the integrand 
behaves in a weakly singular manner over segments that approach the velocity point 
(&),, closely. Dritschel (figure 13, 1986) illustrated the numerical instability that is 
related to the inaccurate evaluation of the velocities via a numerical quadrature. 
Increasing the order of the quadrature delayed the appearance of the instability but 
did not eliminate it. To avoid these difficulties in ‘close approach’ integrations, we 
introduce an ‘analytic patch’ procedure in which we decompose the integrand into 
a simple part that varies rapidly but can be integrated analytically, and a slowly 
varying (but more complex) part that can be accurately integrated with a 4-point 
Gauss-Legendre quadrature. Further details are included in the Appendix. Where 
the close-approach approximation is not required, we use the fixed-rule quadrature 
only. The ODE solver utilized was a packaged 4,5th-order Runge-Kutta-Fehlberg 
routine (RKF45) from the text Forsythe, Malcolm & Moler (1977). The single-step 
truncation error tolerance, t?&, was specified on entry to the routine and for most 
calculations was set to 

The node update scheme is essentially that described in Jacobs & Pullin (1985) and 
Pullin & Jacobs (1986). Briefly, a node was inserted between (c,)k and on C, 
if 

where eni is determined by a set of criteria based on the local curvature and proximity 
of other contour sections. The new node was placed at e = k+0.5  by linear 
interpolation on [(c,)k, (&)k+l]. The node deletion scheme operated by deleting node 
(CjIk if 

I(&)k+l-  (&)kl < €nd (11) 

where end is a specified fraction of eni or an absolute lower limit. This simple node- 
deletion procedure was preferred to one involving higher-order interpolation as we 
found by experience that it tended to reduce the occurrence of slender filaments 
containing negligible circulation and decreased the tendency for contours to fold 
back upon themselves. 
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6J 
-0.0502 
-0.1179 
-0.1592 
-0.1819 
-0.0130 
-0.0300 
-0.0529 
-0.0811 
-0.1092 
-0.1370 
-0.1671 
-0.1857 

ikJ 
0.7290 
0.4375 
0.2550 
0.1180 

0.8230 
0.7078 
0.6008 
0.5020 
0.4033 
0.3127 
0.2140 
0.1152 

TABLE 1.  Dimensionless piecewise-constant vorticity profile for the upper half of the unperturbed 
shear layer. Lengthscale = AC/(2z), timescale = A:/(4n2rc), A, = A,; (a) M = 4, k,6, = 0.875; ( b )  
M = 8, k,S, = 0.857. 

Qualitative checks upon the solution accuracy were made by monitoring the 
fractional error in the circulation invariants for each uniform-vorticity region 

Unfortunately, A(Qj) is fairly insensitive to the fine-scale coherence of the C,, while 
higher-order vorticity invariants such as those associated with linear and angular 
momentum conservation and energy conservation are difficult to calculate to the 
required accuracy. We found that the most reliable way of testing the accuracy of the 
method is to demonstrate convergence of the solution contours with respect to 
the node-adjustment parameters (which determine N,( t ) ) .  Examples of convergence 
for the stretched shear layer were performed and are discussed subsequently. 

4. Initial conditions 

The undisturbed, or basic, piecewise-constant w(y)-distribution was chosen to 
approximate the Gaussian curve 

(13) 

4.1. Initial vorticity distribution 

49) = A exp [-P(y/hJal, 

where p and A are constants. We denote dimensionless forms of h and w by and h 
respectively, based on the lengthscale L = AJ2n and timescale T = A;/(4n2I'J. 
Numerical values of h and h for our present approximation to (13) in y > 0 with 
M = 4 and M = 8 are given in tables 1 (a)  and l (b)  respectively. We define the 
vorticity thickness 8, = AU/w,, where w,,, = aU/aylmsx occurs a t  the midpoint of 
the layer. The means of scaling the w(y)-distribution in the y-direction by choice of 
13, will be discussed subsequently. 
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4.2. Initial disturbance : linearized analysis 

Initial conditions for the CD simulations were provided by superimposing vorticity- 
preserving disturbances on the basic flow. These took the form of x-periodic contour 
perturbations given by 

N 

q (x ,  t )  = ih + C a,fLM) exp ( i n )  exp (ik,[s/n+ 4,]) (14a) 
n=1 

where a, and $ n  are arbitrary scaling amplitudes and phase shifts respectively, 
and 

In (14a) r],(x, t )  is the y-coordinate for C,, ai = ar5+iali is the complex amplitude, 
k, = 27c/h, is the wavenumber of the fundamental disturbance and IT = ur +ia, is the 
complex growth rate ( -  ui = growth rate, u J k  = phase speed) of the perturbation. 
T is the transpose. Equation (14a) is a sum consisting of a fundamental of 
wavelength A, plus N -  1 subharmonics. Hence A, = Nh,.  The fundamental is 
determined by solving the s-periodic temporal stability problem for the unperturbed 
flow, which is equivalent to solving the Rayleigh stability equation for the 
undisturbed piecewise-constant w-distribution. This was done by substituting (14a) 
with N = 1, 4, = 0, and equivalent expressions for the perturbed velocity fields into 
the Euler equations and linearizing in a; thus giving an eigenvalue problem with 
eigenvalue u and a*, j = 1 ... M ,  1' ... M as part of the associated eigenfunction. 
Details of this linear stability analysis of the piecewise-constant vorticity profiles are 
contained in Jacobs (1987). 

Figure 2 shows thenormalized growth rate ( - ITi/wmax) for the four vorticity profiles : 
(a )  the uniform-vorticity layer M = 1 previously studied by Rayleigh (1880) and 
more recently by Pozrikidis & Higdon (1985); ( b )  the piecewise-constant M = 4 
vorticity profile (table la);  (c) the piecewise-constant M = 8 vorticity profile (table 
1 b)  ; and ( d )  the continuous vorticity profile corresponding to the tanh velocity profile 
studies by Michalke (1964). For all profiles, there are unstable perturbations only for 
a limited range of k6,. All solutions that have ui =+ 0 also have ur = 0 indicating that 
unstable distrubances do not progress along the layer. 

We normalize the numerical values for the a5 such that the contour with largest 
displacement has magnitude la1 = 1.0. (The contour of maximum amplitude is 
always the innermost contour C,, C,,.) The normalization procedure also imposes 
a symmetry oli. = -a: where * represents the complex conjugate. It follows that 
the initial contour perturbations, and hence the subsequent contour evolution 
determined by (7),  are invariant under (2, y)-axis rotations of nn radians. 

Corcos & Sherman (1984) report that  an early consequence of nonlinearity in the 
vortex dynamics is the selection of a dominant wavelength. There is experimental 
evidence (e.g. Thorpe 1971) to suggest that, early in the evolution, a single 
wavelength dominates the growth and temporarily inhibits the growth of 
perturbations having similar wavelengths but with either smaller growth rates (vi) 
or smaller initial amplitudes (ao). It thus seems reasonable to use initial conditions 
that are simpler than a perturbation with a continuous wavenumber spectrum and 
have only, say, two or three linearly combined eigenfunctions ( N  = 2 or N = 3 i n  
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FIGURE 2. Normalized growth rates for four vorticity distributions: (a) single region, M = 1, of 
uniform vorticity; (b) M = 8 piecewise-constant vorticity profile; ( c )  M = 4 piecewise-constant 
vorticity profile ; (d )  hyperbolic-tangent velocity profile (Michalke 1964). The primary mode, first 
subharmonic, and second subharmonic for the M = 4 vorticity profile are 1abelledf;)f.) andf;) 
respectively. 

9 

(a) j f:), (k8, = 0.875) f.), (k8, = 0.438) f;), (k8, = 0.292) 
1 -0.24Si0.339 - 0.194-i0.652 - 0.14340.762 
2 - 0.331-i0.479 -0.21 1-i0.772 -0.15140.842 
3 - 0.393-i0.667 - 0.20640.883 -0.137-i0.931 
4 - 0.34 1-iO.940 -0.137-i0.991 - 0.0843-i0.997 

cc1 

j f:), (k8, = 0.867) 
1 - 0.22&i0.3 15 
2 - 0.24840.355 
3 -0.27Gi0.397 
4 - 0.30640.448 
5 -0.33940.511 
6 - 0.37&0.595 
7 - 0.38GiO ,735 
8 -0.32940.994 

$,"), (k8, = 0.429) 
-0.17tX0.621 
- 0.1 8SiO. 660 
-0.194-iO.701 
- 0.206iO. 738 
-0.21(ri0.786 
- 0.20KO. 84 1 
- 0.2 15i0.887 
- 0.1 3 140.99 1 

TABLE 2. Complex amplitudes for fundamentalf?), first subharmonicf,4) and second subharmonic 
f,") eigenmodes from linear analysis. (a) M = 4, (b) M = 8. 

(14)). The fundamental mode is chosen to be the perturbation with maximum rate 
of growth in figure 2 and is labelled as fIM). For M = 4, k, du = 0.875, while for 
M = 8, k, 13, = 0.857. We note that fixing k, d, fixes the y-scale of the @-distribution 
for the fundamental mode given in table ( l a ,  b) .  In  figure 2 the fundamental, first 
subharmonic, and second subharmonic modes for the M = 4 profile are indicated by 
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h 
Case N = 2 M 

1 1 1 
2 1 4 
3 2 4 
3a 2 4 
4 2 8 
5 2 4 
6 2 4 
7 3 4 

4 
Perturbation Comment 

Uniform vorticity layer 
Non-uniform vorticity layer 
Pairing interaction 
Single precision 
Pairing interaction 
Tearing interaction 
Combined pairing/tearing 
Three-vortex coalescence 

TABLE 3. Summary of two-dimensional shear-layer simulations (9, = 0). Perturbation amplitudes 
are scaled as a, k,. All computations used 14-figure arithmetic except for 3a. hc = length of 
computational domain ; A, = fundamental wavelength. 

fi4),fL4), and f y) respectively. Table 2 ( a )  contains the numeric vales for the as in the 
upper half of the layer (i.e. aj, j = 1 ... 4) for the M = 4 profile, while table 2 (b)  
contains the data defining the fundamental and first subharmonic eigenfunctions for 
the M = 8 profile. 

4.3. Choice of a, and f, 
All present computations were performed with N = 1,  2 or 3. Table 3 gives a 
summary of the various mode combinations according to (14a)  that were used in the 
present simulations, and also shows values of the a, and q5n used in the various cases. 
Consider the superposition of only the fundamental f!") plus the first subharmonic 
f:") (N = 2). Choosing $, = 0, the effect offi") depends on q5z, and owing to x- 
periodicity in 0 < x < A, = 2 4 ,  we need only consider the range 0 < $z < in. We 
choose (92 = 0, +IT, +R, which can be shown to correspond to the well-known pure 
pairing mode, pairing/tearing mode and the pure tearing modes respectively. 
Referring to the first frame of figure 3 with N = 2, $z = 0, fr) redistributes the 
unperturbed vorticity to produce two slight accumulations which will later become 
the primary vortex cores with spacing A,. f f) modulates the y-positions of the vortex- 
accumulation centroids while maintaining equal strength. With $ z  = $IT (figure 4), 
f f) modulates the strengths of the vortex accumulations while maintaining their 
centroids undisturbed and, when $z  = in, f f) alters both the accumulation strengths 
and the centroid positions. 

Ideally we would like to choose the a, sufficiently small so that the early layer 
evolution remains within the linear regime. The results of several numerical 
experiments indicated that the choice a, k, = 0.1 was adequate in this respect and 
was used in all simulations with N > 1. Where N = 1 we used a, k, = 0.05. 

5. Results and discussion 
Most of the present simulations were done in 64-bit arithmetic on a Cyber 205 
computer, while some were performed in 32-bit precision on an IBM 3083 computer. 
Sensitivity of the solutions to initial vorticity profile variations was checked by 
comparing particular M = 4 simulations with a uniform-vorticity (M = 1 )  layer (case 
1,  table 3) and an M = 8 layer (case 4) .  A separate computation, case 3a performed 
with an independent code (see Jacobs 1987) indicated that the simulations were 
broadly insensitive to the numerical implementation of the CD algorithm. 
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FIGURE 4. Evolution of M = 4 shear layer showing a tearing event. 
Initial perturbationf:) +e'K/zf!:) (case 5, table 3). Times T as shown. 

Where possible (and convenient) we made use of the shear-layer symmetries and 
set the lower contours (C,.) to be images of the upper contours, thus halving the 
computational effort required for the full nonlinear calculation. However, this could 
only be done for cases where the phase shift of all of the subharmonics was set to zero 
(cases 1, 2, 3, 3a,  4, 7 of table 3). Although case 5 has a similar form of symmetry, 
it was not implemented in the numerical code. Numbers of nodes on each contour 
ranged from N,(t = 0) = 60, j = 1 ... 4 to typically Nj(7,,,) = 527, 718, 867, 957. 
(These figures are obtained from case 3.) The largest number of nodes always 
occurred on the innermost contours, which were invariably the longest. The maxi- 
mum number of nodes allowed on the Cyber 205 runs was restricted to N,,, = 1000 
and the IBM 3083 was restricted to N,, = 600. 

Each simulation takes place in a box of length A ,  = Nh,  which contains circulation 
r, = N r , ,  where r, is the circulation associated with the fundamental. The actual 
computations were based on length- and timescales defined in $4.1 but it is convenient 
to discuss results in terms of a length-scale A, and a dimensionless time 7 = t/T,, 
where Tl = hi/I',. These scales are associated with the fundamental. Evolutionary 
histories are presented as sequences of snapshots of the bounding contours with 
increasing 7.  The contours have been reconstructed from the node sets by joining 
consecutive nodes by straight-line segments. Although parabolic segments have been 
used in the calculations, the straight segments give a better idea of the segment size 
and contour resolution obtained. 

Other information computed includes : 
(i) normalized length of contour p ,  giving a measure of the interfacial area of the 

two-dimensional layer and hence mixing ; 
(ii) maximum height of contours Y,; 
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FIGURE 5. Evolution of the M = 4 layer disturbed by the fundamental mode perturbation, 
ft) (case 3, table 3). Times 7 as shown. 

(iii) mean velocity profile (u,)(y) where the spatial mean is taken over the length 

(iv) mean vorticity thickness of the layer S,,,. Unfortunately S, was very sensitive to 

(v) mean momentum thickness of the layer 

of the computational domain ; 

the form of the velocity profile (u,), especially near y = 0;  

Being an integral measure, 8 was less sensitive to the velocity profile (uz)(y), and 
hence more suitable for comparison with experimental results ; 

(vi) velocity fluctuation intensities ; 
(vii) Reynolds stresses ; 
(viii) local vorticity thickness of the braid connecting the spanwise vortices 

where hM+, = 0 and h,, j = 1 . .  . M are measured ‘by hand ’ from enlarged plots of the 
solution contours. 

5.1. Nonlinear roll-up 
The evolution of a non-uniform-vorticity (M = 4) layer disturbed by f y’ only (case 
2, table 3) is shown in figure 5 .  The solution has started to degrade by the final times 
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FIGURE 6. Comparison of CD solution with experimental observation. (a) Digital laser-induced- 
fluorescence picture of the plane mixing layer showing a single vortex structure, reproduced from 
figure 7 ( a )  from Koochesfahani & Dimotakis (1986). (The original figure was in colour.) ( b )  CD 
solution (case 2) at 7 = 5.284. 

shown here. By T = 3.040 most of the vorticity has been concentrated into nearly 
elliptical vortex cores with only a small amount of circulation left in the braids that 
spiral around the cores. The fluid remaining in the braids is predominantly the low- 
vorticity fluid. For later times, we expect that  the cores will continue to rotate and 
deform periodically and that the braid wrapped around the cores will be stretched 
(in-plane) into a tightening spiral. 
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FIGURE 7. Growth of contour length, p,, for the inner-most contour. (a) Single-mode roll-up 
(case 2) ; (b) pairing event (case 3) ; ( c )  tearing event (case 5) ; (d) three-vortex event (case 7). 

In  figure 6, we compare the M = 4, 7 = 5.284 vorticity contours and the laser- 
induced fluorescence (LIF) ‘picture ’ taken by Koochesfahani & Dimotakis (1986) of 
a mixing layer a t  Re, = 1750 (before the mixing transition). The digital LIP picture 
has been produced by concatenating a sequence of scans of the light intensity across 
the thickness of the layer as the structure was convected past the sensor. A false 
colour image (reproduced here in black & white) was then formed using a digital 
techniques. In this sense it is not an instantaneous picture of the vortical structure. 
Also, (i) the flow-visualization techniques rely on a passive marker to indirectly tag 
the vorticity field; and (ii) the experimental mixing layer possesses an asymmetry 
which is noticeable in figure 6 ( a ) .  Note that we have imposed a symmetry to 
coordinate rotations of nn radians in the numerical simulations by using the 
temporal model and a symmetric perturbation. Despite these points, there is a close 
similarity in features of the CD solution, the LIP picture and also the picture of the 
forced mixing layer taken by Roberts, Dimotakis & Roshko (1982). 

It is interesting to note the migration of the vortical fluid in the braids over the 
adjacent vortex cores after the roll-up has occurred. In  their moderate-Re 
simulations, Corcos & Sherman (1984) observed a relaxation of the vorticity 
distribution after a ‘climax’ state had been reached. This migration begins to occur 
a t  about 7 = 5 with the braids taking a shape similar to those in (i) the LIF picture 
(figure 6 a ) ;  (ii) the vortex sheet calculations of Krasny (1986b, figure 13) and (iii) the 
initial stages of the vortex splitting process observed by Freymuth, Bank & Palmer 
(1984) for the accelerating flow behind an inclined aerofoil. The spiralling of the 
braids around the vortex cores entangles free-stream irrotational fluid in a process 
that we interpret as entrainment. 

The interfacial area, as measured by the contour length, p,, is shown in figure 7. 
Initially there is little growth in the contour length as the vorticity is concentrated 
into the vortex cores but, as soon as the braids are formed and begin to wrap around 
the cores, there is a rapid increase in the contour length. The growth rate then 
approaches a roughly constant value, apparently owing to the in-plane stretching of 
the spiral filaments around the vortex cores. These trends are similar to those 
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FIQURE 8. Variation in momentum thickness 0. (a)  Single-mode roll-up (case 2) ; 
(b )  pairing event (case 3) ; (c) tearing event (case 5) ; (d) three-vortex event (case 7)  
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FIQURE 9. Variation of braid thickness with time. (a )  Single-mode roll-up (case 2) ; (b)  pairing event 
(case 3). Broken line shows prediction using strain field midway between two members of an arhy 
of equal point vortices with individual circulation r and spacing h (a)  h = A,, r = r,, (b)  h = 2h,, 
r = 2r,. 

observed in the numerical simulations of Pozrikidis & Higdon (1985) for the M = 1 
layer and the water-tunnel experiments of Breidenthal (1981), although the latter 
experiments included a mixing enhancement due to three-dimensional motions. 

In  figure 8 we show the variation of momentum thickness 8 with time. This plot 
exhibits the low-frequency fluctuations in thickness due to the ‘nutation’ of the 
nearly elliptic vortex cores, an effect first identified (and the term coined) by Zabusky 
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FIGURE 10. Velocity fluctuation intensities for the single-mode roll-up (case 2) : , streamwise 
fluctuations <uZ>i/AU; --, transverse fluctuations (u$/AU. (a) 7 = 2.026; ( b )  3.040; (c) 4.053; 
(d) 5.066. Symbols for experimental measurements : 0,  streamwise fluctuations from Oster & 
Wygnanski (1982, figure 20), forcing frequencyf = 50 Hz, z = 1300 mm ; 0 ,  transverse fluctuations 
from Oster & Wygnanski (1982, figure 22), f = 40 Hz, 5 = 1200 mm. 

& Deem (1971) in a CIC simulation of a periodic vortex street. Plots of Y, versus time 
(not shown) indicate that the layer thickness reaches approximately 40%-60 % of 
the (maximum) wavelength A,. This is consistent with the results of Pozrikidis & 
Higdon (1985). 

The variation in vorticity thickness, a,, of the M = 4 braid midway between the 
cores is plotted on a logarithmic axis in figure 9 compared with the expected 
asymptotic variation of 6, for a model point-vortex array with vortices of strength 
r, and spacing A,. Once the vorticity layer has collapsed into compact cores (say by 
7 = 3.040 in figure 5), the slope of the 6, curve approaches that of the model (i.e. 
d / d ~ [ l n  (6,/A1)] = -an). The plot has been truncated a t  7 = 4.053 owing to the 
difficulty in accurately measuring the braid thickness beyond this time. 

In figure 10, we compare the computed velocity fluctuation intensities with the 
experimental measurements of Oster & Wygnanski (1982) for the forced mixing layer. 
We have reproduced their data for the region of the mixing layer in which there is 
a temporary suppression of the subharmonic interactions and we have chosen values 
of x and T to  demonstrate the similarity in profile features. There is a well-defined 
depression of the x-velocity (longitudinal) fluctuation intensity near the axis of the 
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FIGURE 11. Four magnified views of the contours for the pairing calculation in figure 3 (case 3). 
Times 7 as shown. 

layer due to the close alignment of the row of vortices. Both the longitudinal and 
transverse fluctuations compare qualitatively with those computed for the CD 
simulation. 

5.2. Primary mode plus first subharmonic 
For merging of the primary vortices to occur, both the fundamental plus its 
subharmonic need be present. Ho & Huang (1982) have shown that, if the layer is 
forced by just the fundamental eigenfunction, the subharmonic is suppressed and 
merging delayed. Previously, Riley & Metcalfe (1980) showed that, if just the 
subharmonic is present, then the layer will roll-up on a larger wavelength without the 
merging process. Although the fundamental and subharmonic eigenfunctions may be 
combined with any relative phase and amplitude, we consider only the cases of table 3. 
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FIGURE 12. Evolution of an M = 8 shear layer showing a single pairing event. 
Initial perturbationf:)+fl) (case 4, table 3). Times 7 as shown. 

We note that initial conditions with few harmonics are idealized ; other significant 
harmonics will be present in experimental flows. 

First we consider the evolution of the M = 4 non-uniform-vorticity layer with an 
initial perturbation defined by case 3 of table 3, with q52 = 0. This combination of 
eigenfunctions leads to a pairing interaction in which two vortex cores (with initial 
spacing, A,) coalesce into a single structure. At 7 = 0 in figure 3 the vorticity 
distribution has been disturbed to produce two slight accumulations (fundamental) 
whose centroids have been offset from the z-axis (subharmonic). The early stage of 
the nonlinear roll-up is a similar process to that shown for the fundamental alone 
(figure 5) .  However, the growth of the subharmonic has become prominent by 
7 = 2.533 with the vortex cores approaching each other and beginning to rotate 
about each other, By 7 = 4.559, the vortex cores have ‘coalesced’ into a single, 
elongated structure connected to the rest of the array (not shown) by an extremely 
thin braid. This braid is so fine (see for example the magnified view a t  7 = 5.066 in 
figure 11) that we expect its global dynamical effect to be negligible, which may 
justify the use of a form contour surgery (Dritschel 1988) to remove the braids for 
long-time simulations. Also evident in the final two frames is the initial stage of 
ejection of vortex arms typical of the coalescence of two equal and otherwise isolated 
vortices (e.g. Christiansen & Zabusky 1973; Zabusky et al. 1979). 

Figure 11 shows close-ups of sections of the bounding contours a t  four times during 
the evolution. The degradation of the contour smoothness is evident as 7 increases 
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FIGURE 13. Comparison of layer evolutions involving a pairing event : (a)  CD simulation of an 
invisicid shear layer at T = 5.066 (case 3, figure 3);  ( b )  finite-difference calculation a t  Re, = 100 
reproduced from figure 8 of Corcos & Sherman (1984) ; (c) digital laser-induced-fluorescence picture 
of the plane mixing layer at Re,= 1750 showing the coalescence of two vortices into a single 
structure, reproduced from figure 7 ( b )  from Koochesfahani & Dimotakis (1986). 

but, simultaneously, the detail of the vorticity distribution has increased markedly. 
These fine-scale features are most obvious at 7 = 5.066 where the contours within the 
vortex filaments appear to merge into a single line. Although the tracking of these 
vortex filaments is a computational disadvantage of the CD method, the resolution 
obtained in figures 3 and 11 could not be obtained with the inherently grainy vortex- 
element methods. 

The sensitivity of the layer evolution to M is tested by performing essentially the 
same simulation with M = 8 (case 4, table 3) shown in figure 12. The initial thickness 
of the layer is slightly different as the maximum growth rate for M = 8 occurs a t  
k,6, = 0.857 according to the linear theory. We could not compute the evolution to 
the same stage as for the M = 4 case but, up to the time 7 = 3.799, the main features 
of the evolution are very similar. To emphasize this point we can compare 
corresponding M = 4 (figure 3) and M = 8 (figure 12) frames a t  7 = 3.546. In the 
region between the two approaching (M = 8) vortex cores, the braid composed of 16 
contours appears to have collapsed to a single line. Overall, the dynamics are therefore 
fairly insensitive to the initial vorticity profile. The braid between the pairing 
structures (i.e. a t  x = 0) is slightly thicker than for the M = 4 case but, otherwise, the 
intensification of vorticity gradients is essentially the same. Overlaying the figures 
reveals that the difference in the position of the outer contour is only approximately 

The vortex histories produced here are very similar to those generated in other 
numerical simulations and observed in experiments. Figure 13 shows (a) the 

1 o/o of A,. 
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(4 
FIGURE 14. Mean velocity profiles for the pairing event. -, computed results: (a)  7 = 2.026; (6) 
3.040, (c) 4.053, (d) 5.066. 0 ,  tanh profile; Ho 6 Huang (1982, figure 23) mode I1 mixing layer; 
0,  z = 9.5 cm; a, z = 14.0 cm. Note that the experimental results have been paired with the 
computed results to show the similarities qualitatively. They may not be at equivalent stations. 
Note also that the y/B scale has been multiplied by four (om only). 

r = 5.066 frame from our M = 4 inviscid simulation, ( b )  the 7 = 3.0 frame from the 
Re, = O( 100) simulation by Corcos & Sherman (1984) and (c) the LIP image of vortex 
coalescence in a plane mixing layer taken by Koochesfahani & Dimotakis (1986). The 
remarkably similar large-scale features in all three pictures provides supporting 
evidence for the hypothesis that the large-scale vortex dynamics are only weakly 
dependent on Re (Zabusky & Deem 1971). 

By the final times reached in the pairing event, there seems to be less entanglement 
of irrotational fluid into the spiral vortex structure than for the simulations of the 
layer with the fundamental eigenfunction (ti) only. This may occur because 
the entanglement process is relatively slow and that, as noted by Acton (1976), the 
pairing (and coalescence) process is very rapid, once started. 

The growth of the interfacial area for the M = 4 layer, as measured by the contour 
length p, ,  is shown in figure 7. The curves are very similar in form to the 
corresponding curve for the fundamental only except for the earlier starting time for 
rapid growth. (This is due to the larger initial amplitude for the fundamental 
eigenfunction in this pairing case.) Even in the presence of the pairing interaction, 
the growth of the contour length appears to be determined by the roll-up of the spiral 
filaments about the vortex cores. 

Four representative plots of the mean velocity profile during the pairing event are 
shown in figure 14. There is a strong qualitative similarity in the features of these 
profiles and the superimposed measurements of Ho & Huang (1982) for the ‘mode I1 ’ 
mixing layer which is forced at the first subharmonic of the most amplified frequency. 
Corresponding values of x and 7 are chosen on the basis of similarity of profile 
features. The correct sequence of profiles is maintained but the increments in x may 
not correspond to the increments in 7.  Note the difference in the measured profile at  
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FIGURE 15. Streamwise velocity fluctuations for the pairing event (case 3) (a) T = 2.026, ( b )  3.04, 
(c) 4.053, (d )  5.066. Symbols for experimental measurements: (b )  Ho & Huang (1982, figure 29) 
mode I1 layer, x = 12.0 cm, (c) ibid z = 21.5 cm. 

time r = 4.053 as the vortex centroids approach a maximum displacement from the 
axis of the layer. Figure 15 shows the streamwise velocity fluctuations compared 
with some experimental results from the mode I1 layer of Ho & Huang (1982). 
Although the comparison is quantitatively poor, both the computed and experi- 
mental data show triple- and double-peak profiles in figures 15(b) and 15(c) 
respectively. 

The variation in calculated Reynolds stresses across the thickness of the layer is 
similar to the experimental measurements discussed in Ho & Huerre (1984) and the 
computational measurements of Aref & Siggia (1980) and Riley & Metcalfe (1980). In 
figure 16, we have matched the experimental profiles from Oster (1980) with our 
calculated results on the basis of qualitative similarity of the vortex structures (see 
Ho & Huerre, figure 20). The change in sign of the stresses has been explained by Ho 
& Huerre in terms of the orientation of the merging structure and the associated 
(induced) velocity field. The stresses are positive and increasing for r = 2.026, 3.04 
while the velocity fluctuations are approaching a maximum but become negative for 
r 2 5 when the merged structure passes through a ‘climax’ state and the velocity 
fluctuations begin to relax. As noted by Riley & Metcdfe (1980) this relaxation 
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FIQURE 16. Reynolds stresses for the pairing event (case 3). -, computed results : (a) T = 2.026, 
(6) 3.040, ( c )  4.053, (d )  5.066.- -, measured results from Ho & Huerre (1984, figure 20) using 
data from Oster (1980) (a )  x % 40 cm, (6) x % 80 cm, ( c )  100 cm, (d )  140 cm. 

produces a counter-gradient momentum flux and an associated decrease in the layer 
momentum thickness (figure 8 b ) .  

Figure 9 shows the variation of braid thickness 6, measured at a point on the braid 
midway between the coalescing structures compared with the asymptotic variation 
of 6, according to the point-vortex model with r = 2r1 and h = 2 4 .  Note that 6,) 
here, decreases a t  a higher rate in 2.0 < r < 3.0 owing to the stronger strain induced 
by the rolled-up r, vortices with an initial spacing A,. Beyond r = 4.559, the braid 
thickness was again difficult to measure owing to the degradation of the contour 
description. 

Setting 4, = in gives the tearing mode in which the vorticity distribution now 
consists of a large and a small vorticity concentration with centroids still on the 
x-axis. Figure 4 (case 5 ,  table 3) shows the evolution of the layer initially with this 
distribution. The vorticity from the braid region is now unequally shared in the early 
stages of roll-up resulting in two vortex cores with significantly different strengths 
(circulations). The evolutionary process is similar to the ‘shredding interaction ’ 
described by Patnaik et al. (1976). The large vortex has 1.2r1 while the smaller core 
has 0.8r1, where r, is the nominal circulation of a primary vortex. By the final time 
shown in figure 4, the processes of roll-up combined with tearing appear to be 
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FIGURE 17. Comparison of the CD calculation (tearing mode, case 5) with a calculation at Re = 400. 
(a) r = 4.433 solution from case 5 (figure 4) ; ( 6 )  spectral method solution a t  t = 24 reproduced from 
Riley & Metcalfe (1980), figure 14(c). 

complete and the vortical fluid accumulated by the larger core in thick filaments 
(near the core) is beginning to migrate away and over the top of the smaller vortex 
core. 

The inviscid tearing simulation has different long-time behaviour to the moderate- 
Re simulations of Riley & Metcalfe (1980). Although their simulation at t = 24 has 
a very similar vorticity distribution to the CD solutions at T = 4.433 (see figure 17) 
they suggest (but did not show in their figures) that the fluid from smaller vortex will 
eventually be redistributed into the larger cores. However, our inviscid simulations 
suggest that the smaller core is now stable to the tearing instability, which lends 
support to the conjecture by Moore & Staffman (1975) that the tearing process 
requires viscous diffusion to proceed to completion. The layer’s evolution is now 
similar to the simulation containing the fundamental only. The growth of layer 
thickness as measured by the momentum thickness (figure 8) and the growth of 
contour length pi (figure 7) closely resemble the corresponding curves for the single- 
mode calculation. 

For any relative phase 0 < q52 < $?t the disturbance may be decomposed into a 
pairing component and a tearing component. Pairing is the stronger of these two 
effects (Acton 1976 ; Riley & Metcalfe 1980 ; Corcos & Sherman 1984) and so, when 
there is a random combination, we expect the pairing process to occur most 
frequently, as observed by Hernan & Jimenez (1982). We computed the evolution of 
a layer with q52 = in  (case 6, table 3). Initially, tearing produces two unequal vortex 
cores which at later times approach each other and coalesce into a single structure 
in much the same way as the pure pairing case (case 3, figure 3). 



FIQURE 18. Evolution of an M = 4 layer showing a three-vortex coalescence. Initial disturbance 
f:)++f$” (ease 7, table 3). Inset on the solution a t  7 = 5.224 is a reproduction of part of figure 6(a )  
(5 = 21.0) from Winant & Browand (1974). Note that the shear across the layer is in the opposite 
sense. 

5.3. Primary mode plus second subharmonic 

The next level of complexity in the interaction of subharmonics is the three-vortex 
event. We consider the evolution of the two-dimensional shear layer with an initial 
condition defined by case 7 of table 3. The computational domain now contains three 
wavelengths of the fundamental eigenfunction. Figure 18 shows the layer evolution 
until a time of r = 5.224. Initially the layer rolls into characteristic cores and, as the 
subharmonic grows, the two outer cores begin to rotate about and approach the 
central core. By the final times shown, the vortex cores have merged into a single 
elongated structure which contains much fine-scale detail, especialJy in the regions 
where the braids interact with vortex cores. Inset in the last frames is a section of a 
photograph taken by Winant & Browand (1974) showing a three-vortex structure 
which is very similar to  that produced in our numerical simulation (except that the 
shear direction is reversed). Figure 19a is a close-up of one of the outer vortex cores 
a t  7 = 5.224. The braids have become extremely thin in places but have still 
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FIQURE 19. (a)  Magnified view of the vortex contours for case 7 (figure 18) at 7 = 5.224. Tic-mark 
spacing is 3A,/8. * denotes irrotational fluid. ( b )  Vorticity profile along the section AA. 

maintained their coherence although the contour smoothness has started to 
degrade. The complexity of the vorticity distribution is illustrated in figure 19 b which 
is a vorticity profile along the section through the three vortex cores. Four close-ups 
of the contour evolution are contained in figure 20. As r increases the contour 
description degrades more quickly than for case 3 (figure 11). 

The growth of the interfacial area with time (see figure 7) is almost identical with 
those from the two-vortex pairing up until r = 4.0 with rapid growth commencing as 
soon as the braids were formed. The growth of the layer thickness is again shown by 
the momentum thickness, 8, in figure 8. As would be expected from inspection of the 
vorticity distribution in figure 18, the evolution is still in the rapid growth region 
before the structure reaches its climax. (The axis joining the vortex centroids is not 
yet aligned with the cross-stream direction.) We expect that, if the simulation was 
continued, 8 would eventually reach a plateau and then relax. We did not have 
sufficient computing resource to test this hypothesis. 

6. Stretched shear layers 
6.1. Models of the streamwise vorticity 

We now consider the evolution of prototype structures for the streamwise vorticity 
superimposed upon the quasi-two-dimensional base flow of spanwise vortices. We use 
the Corcos-Lin model of streamwise vortices as a starting point. For this model the 
secondary vortices are assumed to consist of an array of highly flattened, ribbon-like 
vortices with alternating circulations of magnitude r, and spanwise spacing A, where 
the subscript now refers to thejth tier of the CLS model. Experimental measurements 
(e.g. Jimenez 1983) indicate that r, % Pr, where /3 = 0(1 )  and A, x A,. Locally, the 
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FIQURE 20. Four magnified views of the contours in case 7 (figure 18). 
Times 7 as shown ; tick-mark spacing = 3h1/20n. 

vortices are aligned with the braid and evolve in the ambient three-dimensional 
stretching strain field provided by the primary (spanwise) vortices. The inviscid 
secondary vortex simulations of Pullin & Jacobs (1986) (especially those with high 
aspect ratios) show secondary vortices evolving rapidly into a string of compact 
vortex cores connected by braids of streamwise vorticity. An example is shown in 
figure 21 with (in their notation) M = 4, the vortex aspect ratio a2 = 51.7, and the 
dimensionless stretching strain rate f 2  = y,hi/(4x2r2) has the value f2 = 0.1. 
Locally, that is within the dashed box of figure 21, the evolution is qualitatively 
similar to the purely two-dimensional roll-up of the primary (or spanwise) vortices. 
These small-scale vortices, which we associate with the tertiary motions of the CLS 
model, evolve in the ambient strain environment provided by the primary vortices. 
Given the similarities with the two-dimensional-layer evolution, it appears profitable 
to study the behaviour of a stretched shear layer as a model of the secondary vortices 
in the limit of u2 + 00. 

The stretched shear layer has been studied by Lin & Corcos (1984) at moderate 
Re, using a finite-difference technique. They used a Burgers’ vortex layer as an initial 
condition and found roll-up and, in some cases, pairing similar to that for the purely 
two-dimensional layer but substantially modified by the ambient strain environ- 
ment. Note that, unlike the viscous simulations of Lin & Corcos (1984), the 
undisturbed Re = 00 flow here has no equilibrium state (the initially unperturbed 
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FIQURE 21. Initial and final solution frames for the evolution of the secondary vortex array, 
a2 = 51.7, 9,  = 0.1 (Pullin & Jacobs 1986). The dashed box denotes the region where the vortex 
dynamics appears qualitatively similar to that for a periodic layer. 

X 

B\ I X 

i 
FIGURE 22. A section of an 2-periodic shear layer subject to locally uniform three-dimensional 

strain. The layer shown here consists of three regions of uniform vorticity w .  

layer decreases monotonically in thickness as exp ( -y t ) ) .  I n  the present simulations, 
we effectively 'turn on' the dynamics at t = 0. 

In figure 22 we show a conceptual view of the prototype flow model. A non-uniform 
unidirectional vorticity profile is approximated by a piecewise-constant distribution 
in the same way as for the purely two-dimensional layer. The imposed stretching 
strain (4) is represented by the four streamline segments in the (y, 2)-plane. The layer 
is periodic in the (spanwise) x-direction and the extensional axis of the strain is 
aligned with the vortex lines along the z-axis (i.e. parallel to the braids in the primary 
motion). The circulation contained in one wavelength A, of the rolled-up vortex cores 
is r,, giving AU, = T,/A, as the velocity jump across the layer. Here, we choose the 
stretching strain parameter y3 to model conditions which prevail locally within the 
dashed box depicted in figure 21. For this purpose we approximate A, x 0.075A2 and 
r3 x 0.15r2. Using a lengthscale L = A, and a timescale T = hill-',, the local 
dimensionless strain rate f, = y3  T is then given roughly by 9, = 1.5f2. Thus, values 
of f, = 0.15 and f,  = 0.30 were selected in order to study qualitatively the trends 
with finite f 3 .  For discussion we put 7 = t / T .  
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FIGURE 23. Evolution of a stretched shear layer showing a single pairing event, j 3  = 0.15, 
k3aW = 0.875, k ,a ,  = 0.10, initial disturbancef,+f, (case 1 ,  table 3). Times 7 as shown. 

6.2. Discussion 
Figure 23 shows the evolution of a stretched layer initially perturbed as in case 3 of 
table 3, while figure 24 compares the contour profiles a t  a similar stage of evolution 
for f, = 0,0.15 and 0.30. When f 3  > 0 the intensification of vorticity combined with 
the conservation of circulation leads to a reduction in the area enclosed by the 
bounding contours. Also it accelerates the roll-up into compact cores and enhances 
the production of the spiral filaments that wind around these cores. Figure 25 shows 
the variation of contour lengths with time. Once the spiral filaments have formed, 
there is a rapid increase in the contour length, as occurred in the two-dimensional 
simulations. Howwever, the stretching induces a higher rate of growth. For the 
higher strain rate (3, = 0.30), these effects are more pronounced. At 7 = 3.5 in the 
pairing simulations, p, /h ,  = 2.6, 3.2 and 4.0 for f, = 0, 0.15, 0.30 respectively. 

The stretching strain also has a marked effect upon the interaction of the 
subharmonic. First, it inhibits the rotation of the centroids of the vortex cores about 
each other and, secondly, the reduction in area of the vortex cores inhibits 
coalescence of the rolled-up cores. More evidence for the inhibition of rotation of the 
centroids is contained in figure 26, which shows that, for any particular time, the 
maximum height reached is reduced with increasing strain. For example, at 7 = 3.5, 
YJh,  = 0.468, 0.40, 0.352 with 3, = 0, 0.15, 0.30 respectively. However, in both 
plots having f3 > 0, Y ,  still has a high growth rate at  the final times shown. The 
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FIGURE 24. Comparison of late-time solutions for the pairing event with 3 values of stretching, 
f,. Times 7 stretching strain strength 9, and numbers of nodes N defining C,, j = 1 ... 4 as 
shown. 

extent to which the pairing interaction is inhibited may be explained by decomposing 
the (y, 2)-plane strain field into an axisymmetric component 

and an (x, y)-plane component 
uzd = h 3 ( x i - - 3 u ’ ) 7  

where us = u, + uZd, and then transforming to an equivalent two-dimensional (2, y)- 
plane flow (Lundgren 1982) with time variable t’ given by 

t’ = exp [Q(t“)]dt” s, 
With the line joining the vortex centroids nearly aligned with the x-axis, the (x, y)- 
plane strain, 

us = 3 3  exp [ - & ( W ) I  W - Y i ) ,  (20) 

in the equivalent two-dimensional flow tends to separate the vortex cores thus 
slowing and/or inhibiting the tendency for the cores to merge (Jacobs & Pullin 1985). 
In the stretched-layer simulations, however, the velocity vector (consisting of the 
stretching strain plus the induced field due to the rest of the vortex array) at the 
centroid of a vortex core includes a component towards the centre of symmetry of 
the vortex pair (Lin & Corcos 1984). Thus, although the pairing process may be 
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FIQURE 25. Growth of contour length, p, ,  for the'innermost contour 
for the pairing event with stretching; (a) q3 = 0, ( b )  0.15, (c) 0.30. 
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FIQURE 26. Variation of maximum contour height, Y ,  for the outermost contour 
for the pairing event with stretching: (a) pa = 0, (a) 0.15, (c )  0.30. 

initially inhibited, the stretched vortices will always approach each other if they are 
initially perturbed in an alternating fashion. 

Two simulations involving the pure- tearing interaction were also performed for 
= 0.15 and 0.30 respectively (not shown presently). Again the vorticity 

intensification leads to increased speed of rotation of the cores and enhanced 
production of spiral filaments but the effect on the tearing interaction appears to be 
minimal. For both values of stretching investigated, the tearing interaction 
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proceeded to a point where the larger vortex circulation was 1.5 times that of the 
smaller vortex, in much the same time as for the 9, = 0 case. Another feature 
inhibited by vortex stretching is the migration of the thick braid formed around the 
larger core. In  the relatively long-time j 3  = 0, simulations of the single-mode 
perturbation (case 2, table 3), the fluid contained in the braids migrated along the 
layer. However, for the finite j 3  here, the spiral filaments are rapidly tightened about 
the concentrated cores and do not migrate. 

7. Conclusions 
We have applied the CD method to the vortex modelling of various eddy scales 

relevant to the plane turbulent mixing layer at the nominal limit of Re = CO, for 
moderate times. For the strictly two-dimensional temporal instability and roll-up of 
the plane shear layer, we examined the influence of the initial vorticity profile and 
the presence of various subharmonic disturbances on the layer evolution. In all cases, 
the inviscid simulations led to the production of much fine-scale detail, which usually 
resulted in termination of the computation. 

Overall, the simulations showed that variations in the initial vorticity field had 
only a minor effect on the flow evolution but that  the subharmonic content of the 
initial perturbation greatly influenced the post-rolled-up evolution. Disturbing the 
layer with a perturbation consisting of a combination of the fundamental 
eigenfunction and its first subharmonic resulted in a range of post-rolled-up 
evolutions for differing values of phase angle q&. For & = 0, adjacent vortex pairs 
rotated about each other and coalesced into an array of larger vortical structures 
with a larger wavelength. Comparisons with finite- Re simulations and experimental 
observations provide supporting evidence for the hypothesis that the large-scale 
vortex dynamics for the roll-up and pairing processes are only weakly dependent 
upon Re (Zabusky & Deem 1971). Setting $2 = in resulted in a tearing interaction 
in which the roll-up of the layer produces adjacent vortex cores of different strengths. 
Unlike previous moderate-Re simulations, the smaller cores produced in the Re = GO 

simulation here were not completely absorbed by the larger vortices on either side. 
Disturbing the layer with a combination of the fundamental eigenfunction and its 
second subharmonic resulted in the roll-up and subsequent interaction of subsets of 
three adjacent vortices in a manner similar to that observed in the forced mixing- 
layer experiments of Ho & Huang (1982). 

The stretching-strain/vortical interaction studied in the secondary vortex and 
stretched-layer simulations provided an example of an energy transfer mechanism 
(relevant to the turbulent energy cascade) from the large-scale motions (plane strain 
field) to the smaller-scale vortex motions. The evolution of the stretched vortex layer 
was not explored in depth but the calculations performed indicated some of the 
effects of stretching. I n  particular, the stretching enhanced the production of spiral 
filaments but inhibited the coalescence of the rolled-up vortex cores for the pairing 
simulations. A feature not included in the calculations but evident in the 
experimental flow-visualization pictures is the presence of strong random per- 
tubratons (see e.g. Roshko 1980) and fully three-dimensional instabilities. The 
relevance of the stretched-shear-layer calculations is questionable as these insta- 
bilities may destroy the flow coherence on a time-scale comparable with that found 
for the evolution of the fine structure in either the primary or higher-order vortex 
simulations. 
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Appendix : Analytic-patch procedure 
For small IC- 51 and y not on the contour, the accuracy of the velocity calculation 

is improved by the application of an ‘analytic-patch ’ procedure. The full integrand 
in (7) has the form (with A, = 2x) 

which, for small 15-51, may be expanded. Retaining only first-order terms, this 
integrand can be approximated by 

(Y -Y’) d 5  Ifast = 2- - (6-5) de” 

For segments on which the full integrand (A 1 )  is well behaved (i.e. slowly varying), 
we numerically integrate Itotal but, on segments where our fixed quadrature is 
inaccurate owing to rapid variations of this integrand, we integrate 

and add the analytically derived value for Ifast. This ‘analytic-patch ’ procedure is 
implemented on segments for which 

min(I(Q)k-[m(e,)(,i = 0. . .3 )  < segsize, 

segsize = I (Cm)n+~- (5rn)n l  +I(Cm)n-(5m)n-~l, 

(A 4a) 

(A 4b) 

and (I$), =# crn(e), - 1 < e < 1 (i.e. ( Q ) k  is not part of C m ) .  A check is also made for the 
images of the velocity point in the wavelengths either side of the computational 
domain, (Q)k 2x. This criterion was derived from empirical results contained in 
Jacobs (1987). Although the check on proximity (A 4) is fairly crude, it is still too 
expensive to compute each time the velocity routine is called. We assume that the 
nodes do not move too far between calls to the node-adjustment routine and so, on 
entry to the velocity routine for the first time with a ,new set of nodes, we store an 
index of the ‘close’ segments (i.e. those that satisfy equation A 4) for each node. This 
information is stored in a large integer ‘ index-array ’. After summing the numerically 
integrated contributions of each segment to the velocity of a particular node, we then 
look up the ‘index-array ’ and adjust the contribution of the ‘close ’ segments that are 
listed for this node. 

When the ‘ analytic-patch ’ is to be used, we calculate the value of Itast using either 
two straight lines approximating the segment (if (A(  < E ,  E !z 10 x machine precision) 
or the parabolic segment. The expressions for the straight-line segments are very 
similar to those in Jacobs (1987), while the expressions for the parabolic segment 
are 

J1gfastde = T,+A,T,+A,T,, (A 5 a )  
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Tl = 2(2B,-AIB/A) ,  

A ,  = - T , + [ A I T + ~ B ( - B , + A , B / A ) ] / A ,  

- B + 2A - ( - A)$ 
-B+ 2A + ( - A ) +  

T, = -{ln[ 1 
-B-2A - ( - A);  

( - A ) ;  - B - 2 A + ( - A ) i  

and where 
( - A )  = (B2+4AT), 

The subscript I indicates the imaginary part. A derivation of these expressions along 
with a description of the logic required to select the correct log branches of T,  and 
is contained in Jacobs (1987). 
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